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For many participants involved in power trading such as energy merchants, utilities, 

banks, and other investment companies, accurate valuation of generation assets and 

their associated risk calculations is crucial.  Not only does rigorous valuation provide a 

more accurate view of a portfolio’s current value, it also affects the ability to properly 

manage and hedge the risks associated with generation assets.  It is common to state 

that the flexibility involved in the operation of generation assets can be treated as a “real 

option” from a valuation perspective and as such this operational flexibility can be viewed 

as optionality that provides value.  However, each plant also has certain operational 

constraints that affect how much flexibility the user has in operating the plant.   

 

In this article, and subsequent articles that will follow we will detail a number of different 

ways in which industry practitioners typically value the flexibility of generation assets as 

real options whilst taking into account the constraints in operating the plant. As we will 

show, some of these methods can be relatively simple – for example, valuing the asset 

as a portfolio of spread options – while others are more complex, and take into account 

more of the asset’s operational constraints. The level of complexity often depends on the 

type of generation asset that is being modelled.  In this first article we will begin by 

summarizing many of the features of thermal generation assets, describe common 

techniques used to value them, as well as working through a simple example using 

analytic or closed form techniques.  Some of the other techniques will be discussed at 

length in future articles in this series.        

 

Properties of Generation Assets 

Generation assets have many different properties.  The following lists many of the most 

common properties that are commonly taken into account when valuing and measuring 

risk of generation assets. 

• Maximum Capacity 

• Minimum Stable Generation 

• Heat Rate 

• Variable Operational and Maintenance Cost 

• Start Cost 

• Ramp Up Rate 

• Ramp Down Rate 

• Minimum Up Time 

• Minimum Down Time 

• Emissions 

• Outages 

• Scheduled Maintenance 

• Fuel Transportation Costs 

• Power Transmission Costs 
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Of the properties listed above, maximum capacity is probably most familiar to the reader, 

representing the maximum amount of power that can be produced in an hour.  The 

maximum capacity can change from month to month, with the fluctuation in the capacity 

occurring because the capacity is dependant on the thermal gradient between the 

generation unit and the ambient air temperature. The larger the gradient, the larger the 

maximum capacity can be.  On the other hand minimum stable generation is the lowest 

generation level that the unit can operate at, and still produce power that can be sold to 

the grid.  The ability to run at the minimum stable generation allows the operator to run 

the unit at a minimal loss if the unit is not, or can not be shut down. 

 

The concept of the heat rate is also probably familiar to most readers with the value 

representing the efficiency of the unit.  As is the case with maximum capacity, the heat 

rate can also vary through time. A larger thermal gradient between the generator and 

the ambient air temperature improves the unit’s efficiency.  The efficiency can also be 

improved by running the unit at maximum capacity.  The unit is at its least efficient when 

generating at minimum stable generation.  In models that more accurately model the 

operation of the generation unit, the unit can be dispatched at a capacity between the 

minimum stable generation and the maximum capacity, and in these cases a full heat 

rate curve needs to be provided.  The heat rate curve can be described via a step 

function or it can be modeled as a continuous function. 

 

Variable operation and maintenance (VOM) costs represent the non-fuel costs associated 

with running the unit. 

 

Start costs are charges associated with starting the unit.  Some of these charges are 

costs that actually occur such as the purchase of start fuel.  This is the fuel consumed 

while getting the unit up to producing the minimum stable generation.  Other start costs 

are included to account for the wear and tear on a unit caused by stopping and restarting 

the unit.  As we will see later, it can be challenging to account for these costs in any 

analytic valuation solution.  One of the things that make start costs particularly 

challenging is the fact that they may be dependant on how long the unit has been off.  

Units that have just come off line are usually cheaper to bring back on line than similar 

units that have been off for a considerable amount of time. 

 

Ramp up and ramp down rates limit how quickly the unit can change its operating level 

of generation.  Similar to start costs, ramp up rates are also frequently dependant on 

how long the unit has been off line. 

 

Minimum up/down times require that if the unit is turned on/off that the unit remain in 

that state for a minimum number of hours.  These constraints are put in place to 

minimize excessive wear and tear the unit would experience if it were constantly 

switched on and off. 
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Emissions costs associated with CO2, NOx, and SO2 are an important component to 

include in asset valuations.  Since most emission markets are still relatively immature, it 

is often difficult to estimate reliable parameters for modelling their prices, and so these 

costs are often included as deterministic values and treated much like VOM costs. When 

parameters can be estimated, the incorporation of stochastic prices for emissions 

complicates the modelling process and typically requires Monte Carlo simulation 

methods. 

 

Every unit has the possibility of suffering a forced outage.  Forced outages are random 

outages that reduce the operating capacity of the unit or take it off line completely for an 

extended period of time. In addition to forced outages there are scheduled maintenance 

outages.  Although schedule maintenance outages are planned, they may take at least 

several days if they are for major issues.  Both of these kinds of outages can have 

significant impact on the valuation of the plant. 

 

Since, typically, generation units are not located at the gas supply or the load centre, we 

have to account for costs associated with getting the gas to the plant and the power to 

the grid.  These costs may show up in the form of adders, multipliers, taxes or losses.     

 

Financial Options vs. Generation Assets 

One of the benefits of treating an asset as a real option is that we can make use of the 

many techniques that have been developed for the valuation of financial options.  As we 

have seen, there are a number of constraints that we would like to take into account 

when valuing a generation asset.  Consequently, it is worth understanding the difference 

between financial and real options so that we understand the limitations these techniques 

impose on us when we value generation assets. 

 

Firstly, typically financial options are paid for ‘up front’ and there is no significant cost to 

exercising the  option.  As we have seen, there usually is a start cost associated with the 

generation asset.  Since the start charge is accounted per start and not per hour run, it is 

more complicated to implement start costs in a closed form solution than in a Monte 

Carlo solution. 

 

The second major difference between financial options and generation assets is that once 

the financial option matures, we can immediately exercise it.  Generation assets, on the 

other hand, have a ramp rate which implies that we can’t instantly go from having the 

unit off to running at maximum capacity.  In other words, we need to decide to exercise 

the real option of the generation asset before its expiry. 

 

Most financial options can have the payoff descried in a single payoff function that can be 

easily written down.  This is even true for some path dependant options like Asian 

options. The operational constraints of a generation asset such as start costs, ramp 

rates, and minimum up/down times, require us to keep track of prior states of the unit.   
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This requirement makes it difficult to write out a simple payoff function for a generation 

asset with all the operational constraints.  In order to make use of many of the standard 

techniques from financial options, many of the constraints of the generation asset are 

typically ignored or modelled in a less than ideal way. 

 

Overview of Valuation Methodologies 

There are a number of different ways of valuing a generation assets as a real option 

which we now go on to describe. As we will see there are advantages and disadvantages 

to each of the techniques.   

 

Analytic Spark Spread Option 

There is a long history of using spread options to value many different kinds of energy 

assets as real options.  For example, refineries have been modelled as the spread 

between the input crude price, and the prices of the refined products (crack spread 

options); storage assets can be modelled as the spread between cheap – input – forward 

months and expensive – withdrawal – months (calendar spread options), and 

transportation/transmission systems can be modelled as geographic spread options.  It is 

a natural step to treat a generation asset as a spark spread options.   A spark spread 

option is an option on the spread between the power price and the input fuel price used 

to generate it1.  The advantage of this approach is that it is very simple and easy to get a 

quick evaluation of the asset.  The payoff function for a spark spread option maturing at 

time T is given by 

 

)0,( KGHRPMaxtQPayoff TT −×−×∆×=  , 

 

where Q  is the maximum capacity, t∆  is the time the unit is generating power, TP is the 

power price at the maturity of the option, HR is the heat rate, TG  is the natural gas 

price, and K   is a fixed strike. The fixed strike will be composed of the VOM as well as 

other costs from the other operational constraints.  In order to value this type of spread 

option we can make use of the standard formula for a call option on a futures contract.  

The payoff for a European call option on a futures contract is given by 

 

)0,( KFMaxPayoffCall T −=  

 

 

 

                                                   

1  In the US spark spread refers to and spread between power and the fuel used to generate it.  In the 
UK and Europe, often a distinction is made between the fuels used to generate the power.  A spark 
spread is the spread between power and natural gas and a dark spread is the spread between 
power and coal. 
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where TF  is the futures contract price underlying the option at the maturity date. This is 

just Black’s formula [Black, 1976] and the analytic expression for the value of the option 

is given by 

 

[ ])()( ThNKhNFec
rT σ−×−×= −

 

 

where F is the current forward price, r is the risk free interest rate, T is the maturity of 

the option, σ  is the volatility, N( ) is the cumulative normal distribution function, and  
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We can rearrange the spark spread option payoff to be2 
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In this formulation, the strike is 1 and there is only one stochastic underlying and its 

volatility is given by    
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The volatility of the single stochastic variable is dependant on the volatility of power, Pσ , 

and gas, Gσ , as well as the correlation, ρ , between the two commodities.  Simple 

substitution of these values into the formula for the value of a call option provides the 

value of the spark spread option. 

 

This valuation method is easy to implement and straight forward to understand.  

However, it doesn’t account for many of the constraints that we listed earlier in this 

article.  For those that can be handled, they are only handled in a very crude fashion.  

For example, emissions costs can be treated as a fixed cost that is incorporated in the 

strike term.  The cost per start can be incorporated similarly.  However, the start gas 

needs to be handled in an alternative way because the gas price is stochastic. Typically, 

start gas is incorporated by adjusting the heat rate input.  We demonstrate this in the 

example presented near the end of this article.  The only way to handle outages, forced 

or scheduled, in this analytic framework is by de-rating the volume, where the volume is  

                                                   

2 See for example Kirk, 1995 
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given by the product of maximum capacity, Q, and hours run, t∆ .  If the unit is expected 

to be forced out for 10% of the hours run then the hours run should be scaled down by a 

similar percentage. Unfortunately, this does not capture the real risk of a forced outage.  

We are also completely unable to capture the affects of ramp rates and minimum 

up/downtime constraints in this methodology. 

 

Monte Carlo Simulation 

Because forward power prices are usually quoted for blocks of hours, it is very common 

to use those same blocks of hours, and the associated forward prices, when applying the 

analytic spark spread option methodology.  There are a number of problems with doing 

this.  The first is that the prices for these blocks do not describe the hourly variability in 

observed prices – this hourly variability is crucial to the valuation of peaking units. 

Secondly, regardless of the granularity, the analytic spark spread option technique is 

unable to connect the dispatch of the plant in one time block with its dispatch in an 

adjoining time block, making it impossible to handle the constraints such as ramp rates, 

and minimum up/down times.   

 

A solution to both of these issues is to implement hourly simulations of the spot power 

price which gives us the granularity in prices to determine how the plant should be run 

each hour.  Although this allows us to incorporate ramp rate and minimum up/down time 

constraints with simulation, we no longer have a simple equation that we can write for 

the payoff.  In order to determine when the plant will run, we need to develop a dispatch 

algorithm which not only takes into account the economic situation but also meets the 

physical constraints.  As part of these constraints we are able to simulate emissions 

prices and outages, greatly improving the accuracy of the valuation. 

 

There are many ways to determine how to dispatch the generation asset.  One can 

develop sophisticated algorithms like linear or dynamic programming.  However, both 

these approaches require a substantial amount of time to design the algorithm.  In the 

case of a linear programming approach, we need to determine all the equations that will 

be used to model our constraints.  The dynamic programming approach requires states 

and transitions to be defined, with the number increasing as the number of constraints 

increases.  Both the linear and dynamic programming approaches are guaranteed to 

determine an optimal solution, but can be difficult to implement.   

 

Although they are not guaranteed to determine the optimal solution, heuristic algorithms 

are often satisfactory.  As heuristic algorithms are a collection of simple rules, they are 

often easier to design and implement.  Additionally, if new constraints are added, it is 

fairly simple to add extra rules for the inclusion of the new constraint.  The differences 

between an optional solution and a suboptimal solution are usually insignificant when 

compared to the difference between implementing a realistic power price model and an 

unrealistic power price model, on the valuation of a generation asset.  
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A solution from a good heuristic model may turn the generator on an hour too late or too 

early from time to time.  This will have less affect on the value of a plant than an 

unrealistic model for hourly power prices. The unrealistic price model will ultimately 

affect the valuation of the generator on all hours.  Furthermore, most Monte Carlo 

solutions assume perfect foresight and this generally more then compensates for any loss 

due to a suboptimal solution. 

 

Perfect foresight with Monte Carlo solutions is achieved because the spot prices that are 

simulated are used to dispatch the plant and to calculate the profit and loss.  In reality a 

plant operator would never know exactly what the spot prices will be in the future – 

instead relying on experience and expectations of future prices.  This means that if there 

is an unexpected spot price realisation the generator may lose out on extra profit or run 

at a loss.  One way around this shortcoming is to dispatch the plant on simulated forward 

prices and then use the spot prices to calculate the profit and loss.  Although this is not 

that much more complicated than the normal Monte Carlo it does require extra time due 

to the extra calculations.  There are other techniques, such as trees and least squares 

Monte Carlo which do not assume perfect foresight. 

 

Trinomial Trees and Least Squares Monte Carlo 

Trinomial trees and least squares Monte Carlo (LSMC) methodologies avoid the issue of 

perfect foresight.  Tree models do this by implementing a process called backward 

induction.  This process starts at the last time step of the tree and determines the 

cashflows of the plant at each of the terminal nodes.  We then step back to the 

penultimate time step and determine the value of the plant at each possible node, which 

is based on the optimized level of generation at that node.  These steps are repeated 

back through the tree determining the operating cashflows and the discounted expected 

future value of the plant until the initial time step. 

 

In tree models, dynamic programs are usually used to determine what state the 

generation asset is in and which state it can transition to in the next time step.  Tree 

methods tend to be very computationally intensive.  This is especially true when we build 

a tree with hourly level granularity.  As a consequence, tree based models at an hourly 

level of granularity tend to take too long to provide results.  A further shortcoming of 

tree models is that we are limited to certain price processes.  The implementation of 

jumps in a tree model increases the computation significantly such that it is impractical.  

Since real world power prices exhibit jumps more than any other commodity, this 

limitation is often considered to be a very severe limitation. 

 

LSMC methods combine the backward induction principal of tree based models with 

Monte Carlo simulation of power prices.  LSMC was originally developed to value 

American style options, which allow for early exercise, within a Monte Carlo framework 

but can be extended to general valuation problems where the optimization covers the 

cashflows that arise from making a decision now (such as operating the plant at a certain  
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level) and which in turn affect the expected future value of the option. Since LSMC does 

not make use of a tree or lattice, it can use any price process to evolve the underlying 

uncertainty.  The downside to LSMC is that it requires many linear regressions to be run 

at each time step. This requirement means that LSMC takes very much longer than any 

of the methods to calculate the value of a plant.  As a consequence, LSMC is often not 

seen as a practical way to value generation assets.     

       

Types of Generation Assets 

We can group generation assets in to three broad categories based on how they are 

expected to serve load: 

• Baseload 

• Mid-merit 

• Peaking 

 

Baseload units, as the name implies, handle the base load of the grid.  They tend to be 

efficient units with low heat rates and consequently, typically operate in the money with 

most of their value being intrinsic value rather than extrinsic. On the negative side, they 

have high start costs and have very long minimum up and down times.  It also takes a 

long time to ramp the unit up to the maximum capacity.  These constraints tend to 

minimize the amount of optionallity that we have for baseload units. Since baseload units 

tend to be in the money and have some significant operational constraints, the use of an 

analytic spark spread option to value them is often seen as a good approximation.    

   

Mid-merit units on the other hand tend to be less efficient than baseload units and/or use 

a costlier fuel which often puts mid-merit units at the cusp of being used. In terms of 

moneyness these units are considered to be at the money and as such have the largest 

amount of extrinsic value.  Consequently, it is very important to properly value the 

optionality of a mid-merit unit.  Mid-merit units typically to have lower start costs, 

shorter minimum up/down times, and less time to ramp up to maximum capacity than 

baseload units.  This implies that the constraints do not constrict the optionality of the 

mid-merit unit as much as they do for baseload units.  Consequently, using an analytic 

spark spread option model for a mid-merit unit would be less than ideal.  The preferred 

method to value mid-merit units would be to make use of the Monte Carlo techniques 

that we discussed earlier. 

 

Peaking units tend to have very high heat rates and as such are seen as out of the 

money options with all of their value seen as extrinsic value.  Peaking units are designed 

to be able to meet sudden peaks in demand and consequently have low start costs, short 

minimum up/down times, and can quickly ramp up to maximum generation.   Since 

peaking units are very flexible and have only extrinsic value, the ideal way to value them 

is to use Monte Carlo techniques. 
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Analytic Spark Spread Example 

Although an analytic spark spread option approach isn’t the best approach for all types of 

generating units, it can be a reasonable method for valuing baseload and intermediate 

units. In this example, we will demonstrate how we can value a unit with start costs over 

a 24 month period beginning on January 1st 2009.  The evaluation date for the 

generation unit is October 1st 2008.  The properties of the unit are as follows: 

 

• Maximum capacity   100 MW 

• Heat rate at maximum capacity 7 MMBTU/MWh 

• Variable O&M    $1.50/MWh 

• Start Cost    $5,000/start 

• Start Gas    700MMBTU 

 

For this example we will assume that the generator will only sell “on peak” power.   

Figure 1 shows the monthly forward power price and the heat rate adjusted forward gas 

price that we will use in this example. In this figure we see the seasonal patterns in the 

power prices which peak during the summer months and the gas price which peaks 

during the winter months.  We can also see that the power price is greater than the 

adjusted gas price during the spring and summer months and consequently we would 

expect to see a non-zero intrinsic value for this power plant in those months. 

 

In addition to the forward curves we also need relevant volatility information.  For 

markets that have liquid option markets, an implied volatility can be calculated.  For 

markets that do not have liquid option markets, an annualized volatility can be estimated 

from historical forward and spot price data. In our example we assume that both the 

power and gas markets have liquid option markets and we were able to back out implied 

volatilities. Figure 2 plots these volatilities. Similar to the forward prices, volatilities also 

exhibit seasonality with power volatilities reflecting the peak power prices during the 

summer months.  The volatility level of both power and gas decay over time, 

representing the term structure of forward volatility.  The gas volatility peaks during the 

winter months, which is when the gas price also peaked. 
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Figure 1: The power forward curve and the heat rate adjusted gas forward curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                              Innovations in risk analytics

 

Lacima thought leadership series 

Copyright Lacima Group 2009  12 / 16 

 

 

Example Volatility/Correlation Data
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Figure 2: Volatility curves for power and gas and correlation between power and gas... 

 

In addition to the forward prices and the volatility, we also require an implied (terminal) 

correlation.  The correlations used in this example are also implied from market data, 

and are also plotted in figure 2 

 

With the parameters of the unit and the data for the forward prices, volatilities, and 

correlation, we can value the generation asset.  Figure 3 shows the calculations for the 

analytic spark spread model. 
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Delivery Expiration
Time to 

Maturity
Power HR * Gas VOM

HR * Gas 

Adder
Start Cost

Total 

Strike

Intrinsic 

Value

Extrinsic 

Value

Total 

Value
MWH

Intrinsic 

Value

Extrinsic 

Value
Total Value

1/31/2009 1/14/2009 0.29 $82.10 $91.52 $1.50 $0.70 3.13 $5.33 $0.00 $1.87 $1.87 33,600 $0 $62,839 $62,839
2/28/2009 2/13/2009 0.37 $86.40 $90.38 $1.50 $0.70 3.13 $5.33 $0.00 $3.49 $3.49 32,000 $0 $111,627 $111,627
3/31/2009 3/13/2009 0.45 $79.75 $77.79 $1.50 $0.70 3.13 $5.33 $0.00 $4.21 $4.21 35,200 $0 $148,037 $148,037
4/30/2009 4/14/2009 0.53 $78.25 $72.11 $1.50 $0.70 3.13 $5.33 $0.80 $4.46 $5.25 35,200 $28,119 $156,857 $184,976

5/31/2009 5/14/2009 0.62 $77.75 $71.86 $1.50 $0.70 3.13 $5.33 $0.56 $4.82 $5.38 32,000 $17,900 $154,277 $172,177

6/30/2009 6/12/2009 0.70 $87.25 $72.65 $1.50 $0.70 3.13 $5.33 $9.09 $3.55 $12.64 35,200 $319,880 $125,130 $445,010

7/31/2009 7/14/2009 0.78 $97.77 $74.27 $1.50 $0.70 3.13 $5.33 $17.75 $3.36 $21.11 36,800 $653,212 $123,809 $777,021

8/31/2009 8/14/2009 0.87 $100.73 $75.11 $1.50 $0.70 3.13 $5.33 $19.77 $2.62 $22.40 33,600 $664,408 $88,164 $752,572

9/30/2009 9/14/2009 0.95 $82.75 $73.92 $1.50 $0.70 3.13 $5.33 $3.40 $5.00 $8.41 33,600 $114,404 $168,087 $282,492

10/31/2009 10/14/2009 1.04 $79.71 $74.78 $1.50 $0.70 3.13 $5.33 $0.00 $5.91 $5.91 35,200 $0 $208,126 $208,126

11/30/2009 11/13/2009 1.12 $74.46 $77.34 $1.50 $0.70 3.13 $5.33 $0.00 $2.79 $2.79 32,000 $0 $89,136 $89,136
12/31/2009 12/14/2009 1.20 $76.83 $83.96 $1.50 $0.70 3.13 $5.33 $0.00 $2.70 $2.70 35,200 $0 $94,988 $94,988
1/31/2010 1/14/2010 1.29 $84.64 $97.55 $1.50 $0.70 3.13 $5.33 $0.00 $2.81 $2.81 32,000 $0 $89,883 $89,883
2/28/2010 2/12/2010 1.37 $88.86 $96.10 $1.50 $0.70 3.13 $5.33 $0.00 $4.10 $4.10 32,000 $0 $131,124 $131,124
3/31/2010 3/12/2010 1.44 $81.06 $82.81 $1.50 $0.70 3.13 $5.33 $0.00 $4.01 $4.01 36,800 $0 $147,669 $147,669

4/30/2010 4/14/2010 1.53 $72.44 $72.96 $1.50 $0.70 3.13 $5.33 $0.00 $3.16 $3.16 35,200 $0 $111,405 $111,405

5/31/2010 5/14/2010 1.62 $73.18 $71.96 $1.50 $0.70 3.13 $5.33 $0.00 $4.21 $4.21 32,000 $0 $134,788 $134,788

6/30/2010 6/14/2010 1.70 $85.67 $72.64 $1.50 $0.70 3.13 $5.33 $7.32 $4.91 $12.23 35,200 $257,707 $172,876 $430,583

7/31/2010 7/14/2010 1.78 $102.95 $74.20 $1.50 $0.70 3.13 $5.33 $22.21 $3.08 $25.29 33,600 $746,204 $103,404 $849,608

8/31/2010 8/13/2010 1.87 $106.05 $75.02 $1.50 $0.70 3.13 $5.33 $24.31 $2.45 $26.76 35,200 $855,562 $86,370 $941,932

9/30/2010 9/14/2010 1.95 $79.32 $73.79 $1.50 $0.70 3.13 $5.33 $0.19 $6.99 $7.18 33,600 $6,347 $234,995 $241,342

10/31/2010 10/14/2010 2.04 $76.70 $74.69 $1.50 $0.70 3.13 $5.33 $0.00 $5.24 $5.24 33,600 $0 $176,107 $176,107
11/30/2010 11/12/2010 2.12 $71.58 $77.16 $1.50 $0.70 3.13 $5.33 $0.00 $2.55 $2.55 33,600 $0 $85,840 $85,840
12/31/2010 12/14/2010 2.20 $73.55 $83.43 $1.50 $0.70 3.13 $5.33 $0.00 $2.44 $2.44 36,800 $0 $89,669 $89,669

Total $3,663,745 $3,095,207 $6,758,952  

Figure 3: Analytic spark spread option calculations. 

 

Each row in Figure 3 represents a calendar month. In this representation we value the 

spread option for a single  hour and then scaling the value by the number of MWhs we 

expect to generate for the month. As each hour has a different time to maturity – the 

dates near the end of the month will have a longer time to maturity and a higher option 

value while the days near the beginning of the month will have a short time to maturity 

and a lower option value – we have chosen the expiration to be around the middle of the 

month as this should even out the difference between the. 

 

The ‘Power’ column represents the on peak power forward price.  We need to take some 

care with the heat rate adjusted gas price.  The reason for this is that we have start gas 

that the unit requires and, since gas price is stochastic, we can’t just incorporate the 

price of the start gas at the current forward price as a fixed part of the strike, as this 

would ignore all the risk associated with the uncertain gas price.  In this example then, 

we scale up the heat rate to account for the start gas.  To calculate the modified heat 

rate we add the start gas to the amount of gas the plant will use for running at maximum 

capacity for 16 hours, and then divide that total number of MWhs produced. 
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700100716
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CapacityMaximum

GasStartCapacityMaximumRateHeat
  

 

The heat rate we used to account for the start gas is 7.4375 and heat rate adjusted gas 

price is represented in column ‘HR*Gas’ of Figure 3. 

 

The fixed strike component of the spark spread model is composed of the variable O&M, 

the gas adder, and the fixed star cost of $5,000 per start.  The variable O&M cost is just 

the cost defined for the generation unit under consideration and is in the column labelled 

‘VOM’. The gas adder is a product of the unadjusted heat rate and the gas adder.  In this 

case it is 7[MMBTU/MWh]*0.10[$/MMBTU] or $0.70.  The cost associated with the  
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$5,000 per start is tricky to handle.  In order to handle it, we need to spread that charge 

over the MWhs we will generate over each day’s 16 hour block.  This means that the 

start charge needs to be divided by 16x100 and translates to a cost of $3.125/MWh that 

can be placed into the fixed strike.  Consequently, the total fixed strike K for the 

generator is the sum of the variable O&M, the heat rate times the gas adder and the 

start cost.  The fixed strike is calculated to be $5.3250/MWh. 

 

We can now use the relations derived above for the analytic spread option to calculate 

the value for each month on a per MWh basis.  The formula provides the total option 

value.  We can also calculate the intrinsic value of the generation unit which we define to 

be ( ) rt
eXGHRPMax

−−×− 0,  where r is the risk free interest rate – assumed in this 

example to be 3%, and t is the time to maturity.  The total option value is discounted 

implicitly.  We can then calculate the extrinsic value to be the difference between the 

total value and the intrinsic value. 

 

The last step is to scale the total value by the MWhs that are generated in each month, 

which is calculated as the product of the number of hours in the on peak block, the 

maximum capacity of the unit, and the number of business days in the month.  The 

monthly intrinsic, extrinsic, and total values are displayed in last 3 columns of Figure 3. 

The monthly intrinsic and total values are graphed in Figure 4.  The difference between 

the total and intrinsic value is the extrinsic value.  The highest values occur during the 

summer months.  This is expected since it is where the power prices are high and the gas 

prices are low.  We can also see from the plot that the total value for the summer 

months is largely made up of intrinsic value.  Most of the total value in the shoulder 

months is from extrinsic value. 
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Example Generator Value
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Figure 4: Total and intrinsic value for the generation unit. 

 

Although the spark spread option presented here is a very simple model, it provides a 

good basis for a rough estimate.  As we mentioned earlier, generator assets have many 

complicated constraints that need to be modelled correctly.  We can only handle a limited 

number of them in the spark spread model.  There are other techniques that can be used 

to correctly handle these other constraints.  We will discuss these methods in subsequent 

articles.   
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About Lacima Group 

Lacima Group is a specialist provider of energy and commodity pricing, valuation and risk 

management software and advisory services. Based on its internationally acclaimed 

research in energy risk modelling, Lacima’s solutions help energy trading organisations to 

effectively quantify and manage risks associated with structured contracts and physical 

assets across multiple commodities and regions. For further information, visit 

www.lacimagroup.com. 
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