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In the first article of this series1, we outlined an approach for calibrating a local 

volatility surface single factor model to market prices of average price (Asian) 

options. In this article we will show how to value exotic options, using the 

calibrated local volatility surface, consistent with the market prices. 

 

The reader will recall from the previous article that the basic idea of implied tree 

approaches is to construct a trinomial tree that is consistent with, whether exactly 

or to some approximation, currently traded energy derivatives prices. Once the 

local volatility function is determined, the trinomial tree can then be used to price 

any other derivative on the same underlying energy asset with the same or earlier 

maturity. In particular, market implied information embodied in the constructed 

tree enables the pricing of OTC and exotic options consistent with the prices of all 

liquid options with the same underlying. 

 

In this article we will calibrate the tree to the market prices of fixed strike Asian 

options and then show how to price floating strike Asian options as our example of 

an alternative derivative. 

 

As with the fixed strike Asian option, the floating strike Asian option is path 

dependent – the value of the option at any node in the implied tree is dependent on 

the path the asset price took to reach that node. Table 1 summarises the different 

types of Asian options outlined in this article, together with the mathematical 

definition of their pay-off. In the case of a fixed strike option, the final asset price is 

the arithmetic average of the spot prices observed on the set of fixing dates it where 

mi ,...,1= , and the strike price is constant. For a floating strike option the final 

strike price is the arithmetic average of the spot prices, and the final asset price is 

the final spot price.  

 

Fixed strike Asian call 









−

+++
K

m

SSS
mttt ...

,0max 21
 

Fixed strike Asian put 








 +++
−

m

SSS
K mttt ...

,0max 21  

Floating strike Asian call 








 +++
−

m

SSS
S mttt

T

...
,0max 21

 

Floating strike Asian put 









−

+++
T

ttt
S

m

SSS
m

...
,0max 21

 

 

Table 1: Different Asian Option Types 

                                                

1 Clark et al, Energy Risk August 2008 
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In our last article we showed how to construct a trinomial tree consistent with an 

initial forward curve, the market prices of fixed strike Asian options, and with the 

assumption of a mean reverting model for the spot price. In order to help with the 

pricing discussion that follows, we repeat some of the notation here. Each node in 

the resulting tree is identified by a pair of integers ),( ji  where Ni ,...,0=  is the 

time step and iij ,...,−=  is the level of the asset price relative to the initial asset 

price.  At node ),( ji  the date is it  where we assume 0
0

=t  and the spot price is 

jiS , with )0(0,0 SS = , the initial spot price.  Each node has three branches which 

connect with nodes at the next time step and each branch has an associated 

transition probability which we denote jiup
,,
, jimp

,,
, and jidp

,,
 for the ‘up’, ‘middle’, 

and ‘down’ probabilities respectively. The resulting trinomial tree is represented 

graphically in Figure 1.  
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Figure 1: Nodes in the trinomial tree 

 

Note that in practice we may truncate the tree to reflect the very small probabilities 

at the edges of the tree that arise due to the mean reverting nature of the process 

we are using. In the construction of the trinomial tree we utilized the concept of 

state prices, or Arrow-Debreu securities, which form the building blocks of all 

securities. These state prices were denoted by jiQ ,  which define, at time 0, the 

price of a security that pays $1 if node ),( ji  is reached, and $0 otherwise. 

 

For the pricing of exotic options from the tree that have a European (single exercise 

at maturity) payoff, we can utilize either the state prices or the transition 

probabilities generated for each node of the tree. For example the price today 
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( 0=t ), )0(C  of any European claim with a payoff )(SC  as a function of the spot 

price S  at the maturity time step N  in the tree is given by: 

 

 ∑=
j jNjN SCQC )()0( ,,   

 

 (1) 

 

where the summation takes place across all of the nodes j  at time N .   

 

That is, for a European call option on the spot price, with strike price K, 
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 (2) 

 

For the same European claim )(SC , we can step back through the tree computing 

the discounted expectation via the relationship, 

 

 
( )

1,1,,,1,,1,1,,,,
)( −++++

∆− ++== jijidjijimjijiu

tr

jiji CpCpCpeSCC i

        

 

 (3) 

 

where ir  denotes the 1 period interest rate and t∆ is the time step size per period. 

The option payoff for each node at maturity jNC , is first calculated, and the above 

discounted expectation is applied to give the price today of the option 0,0C . The 

equivalence between equations (1) and (3) can be seen from equation (8) of our 

last Masterclass series from which we can interpret the Arrow-Debreu securities as 

discounted probabilities.  

 

If the payoff is based on the price of a futures contract then we have, 

 

 ( ) ( )∑ −=
j MjNNjNMjNNNEuroCall KTSTFQTSTFTKC ),,(,0max),,(,,;0 ,,,  

 (4) 

 

Where ),,(
, MjNN TSTF  defines the forward price at node ),( jN  for maturity at 

time MN + , This forward price can be calculated from the spot price, jNS
,
, and the 

initial forward curve. 
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In order to illustrate some properties for the tree we priced a standard European 

at-the-money 3 month call option on the spot price with increasing numbers of 

steps per year (from monthly time steps down to daily time steps). For this option 

we can derive an analytic value, allowing us to comment on the convergence 

properties of the numerical technique. Figure 2 plots this convergence. 
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Figure 2: Price convergence of standard call option as number of steps in 

tree increases 

 

Figure 2 shows the tree prices the standard option to decimal place accuracy for 

daily time steps, and so we use daily time steps for the remainder of the analysis. 

 

Fixed and Floating strike Asian options 

 

There are a number of steps to follow in order to price an Asian option whose 

payoff depends on some function (.)G of either the path of the spot price or of the 

forward price curve. Firstly, we need to determine the range (i.e. the minimum and 

maximum) of possible values of (.)G which can occur for every node in the tree. 

Secondly, we must choose an appropriate set of jin
,
values of (.)G between the 

minimum and maximum values for each node. In choosing jin
,
one must consider 

the distributional properties of the function (.)G . Increasing the number of range 

values increases the accuracy of the pricing method. However, greater accuracy 

comes at the expense of increased computational effort in determining a solution 
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using the tree based implementation. The final steps in the procedure require 

setting the value of the option at maturity at every node and for every value 

of (.)G , and then stepping back through the tree computing discounted 

expectations at every node and for every value of (.)G (analogous to the steps 

described in the previous section).  

 

The payoff at maturity for an Asian call option with a fixed strike price is, 

 

( )KGC kjNkjN −=
,,,,

,0max     

  (5) 

 

where kjNG ,,
is the average of the 

th
k spot price path (or forward curve path) at 

node level j , and jink ,,...,1= . The payoff at maturity for an Asian call option (on 

spot) with a floating strike price is, 

 

( )
kjNjNkjN GSC

,,,,,
,0max −=     

  (6) 

 

where the corresponding payoff for the option on forward contract follows. For a 

detailed explanation of this procedure refer to Clewlow et al [1998] or Clewlow et al 

[2000]. 

 

One of the key determinants of the accuracy of the Asian option implementation in 

the tree framework is the number of averages ( jin
,
) defined at each node. In order 

to investigate this, we price a European exercise, fixed strike Asian call with 3 

months maturity and where we utilize daily averaging over the last month to 

determine the option payoff. For this option we can compare the tree based value 

with a closed form approximation, and our analysis is presented in figure 3. 
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Figure 3: Price convergence of Asian fixed strike call option for an 

increasing number of averages 

 

We can see from figure 3 that the value of the Asian option from the tree converges 

to the analytical approximation as we increase the number of averages. In our 

subsequent analysis we fix the number of averages to be 200, however, in practical 

implementations of Asian option pricing in trees we note that the nodes which lie on 

the upper and lower edges of the tree have only one path which reaches them and 

therefore there will only be one value of the average.  We can therefore adjust the 

number of averages we hold in the tree dependent on the position of the node in 

the tree. The largest range of values will occur in the central section of tree.  The 

number of averages increases exponentially with the number of time steps since 

there is a different average for each path.  However it is impractical to work with an 

exponentially increasing number of averages because the computational cost would 

be too high.  Therefore we approximate with a number of values which increases 

linearly with the number of time steps but also decreases linearly from the central 

nodes of the tree down to one at the edges of the tree.  We can choose ni j,  to be 

given by 

 

( ))(1
,

jabsin ji −+= β     

  (7) 

 

so that ni j,  will always be one at the edges of the tree (j=i and j=-i) and iβ+1  in 

the centre of the tree.  In this way we can increase ? to increase the accuracy of 

the approximation by considering more values of the average.   
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The convergence analysis just performed was under the assumption of no skew in 

the volatility surface. In the remainder of our analysis we generate a local volatility 

skew by calibrating the tree to a market oil forward curve from the end of 2007, as 

well as to a set of fixed strike Asian call and put options. The resulting local 

volatility surface is presented in figure 4. 
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Figure 4: Local volatility surface with smile 

 

Figures 5a & 5b present the values and price differences for the 3 month Asian 

option described earlier with the option prices with & without skew. The prices for 

both Asian call options with (Tree skew) and without (Tree SF) skew are presented 

for a variety of strikes in figure 5a. The differences in price between the two Asian 

call options are shown in figure 5b. Observe that Asian call options with a positive 

smile are priced higher than for those Asian call options without skew. This is to be 

expected due to a greater average volatility for the skewed surface. This price 

difference is greater for at-the-money (ATM) and near-the-money options ($0.10 to 

$0.17), and decreases to zero for deep in-the-money (ITM) and out-of-the-money 

(OTM) options. 
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Figure 5a: Comparison of fixed strike Asian call option prices  

(with and without skew) 
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Figure 5b: Price difference for fixed strike Asian call option prices  

(with and without skew) 
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Finally we compare the prices of fixed and floating strike Asian options. The floating 

strike Asians are used as an example another derivative once the tree has been 

calibrated to the fixed strike Asians. Figure 6 shows a plot of fixed strike ATM and 

floating strike Asian call option prices for a range of maturities. Both options utilize 

daily averaging over the last month. The fixed strike Asian ATM option increases in 

value for longer maturities, reflecting the increasing time value of the option struck 

at a fixed strike price today. In contrast, the floating strike option value does not 

change much over the same maturity horizon given that the strike price is a moving 

average of the spot prices prior to the maturity date.  
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Figure 6: Fixed strike (ATM) and floating strike Asian call option prices for a 

range of maturities 

 

The implied tree we have constructed is a discrete time and state approximation to 

the continuous time risk neutral process represented by the following SDE 
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 (8) 

 

In this article we have described how an implied tree could be used to price exotic 

options.  We thus have a way of pricing exotic options consistent with the market 

prices of standard European options and therefore consistent with the implied 

volatility smile.  Furthermore we can use the implied tree to compute hedge 
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sensitivities in order to dynamically hedge the exotics options with the standard 

options and underlying asset.  However note that if equation (7) is not a good 

representation of the behaviour of the underlying energy price, for example if the 

asset price behaviour involves jumps or stochastic volatility, then hedging 

strategies based on the implied tree may not perform very well.  Furthermore 

dynamic hedging with standard options is problematic because of the more complex 

structure of the instruments and their costs.  A partial solution to both of these 

problems is the concept of static replication.  The idea is to find a portfolio of 

standard options which can be acquired today which will replicate the exotic option 

in all possible future states of the world.  The details of this approach will be the 

subject of its own article later in our Masterclass series. 
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